- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Bietti, Massimo (2)
-
Palone, Andrea (2)
-
Call, Arnau (1)
-
Costas, Miquel (1)
-
Galeotti, Marco (1)
-
Garcia‐Roca, Aleria (1)
-
Houk, K N (1)
-
Liu, Fengjiao (1)
-
Luis, Josep M (1)
-
Nevado, Cristina (1)
-
Salamone, Michela (1)
-
Sigman, Matthew S (1)
-
Yu, Yanmin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Strain Release in Hydrogen Atom Transfer from 1,4-Disubstituted Cyclohexanes to the Cumyloxy RadicalAbstract A kinetic, product, and computational study on the reactions of the cumyloxyl radical (CumO•) with 1,4-dimethyl- and 1,4-diphenylcyclohexanes is reported. The rate constants for hydrogen atom transfer (HAT) from the C–H bonds of these substrates to CumO•, together with the corresponding oxygenation product distributions reveal the role of strain release on reaction site selectivity. Transition structures and activation barriers obtained by DFT calculations are in excellent agreement with the experimental results. Tertiary/secondary ratios of oxygenation products of 0.6, 1.0, and 3.3 were observed, for trans-1,4-dimethyl-, cis-1,4-dimethyl-, and trans-1,4-diphenylcyclohexane, respectively. With cis-1,4-diphenylcyclohexane, exclusive formation of the diastereomeric tertiary alcohol products was observed. Within the two diastereomeric couples, the tertiary equatorial C–H bond in the cis- isomer is ca. 6 and 27 times more reactive, respectively, than the tertiary axial ones, a behavior that reflects the release of 1,3-diaxial strain in the HAT transition state. The tertiary axial C–H bonds of the four substrates show remarkably similar reactivities in spite of the much greater stabilization of the benzyl radicals resulting from HAT from the 1,4-diphenylcyclohexanes. The lack of benzylic acceleration is discussed in the framework of Bernasconi’s ‘principle of nonperfect synchronization’.more » « lessFree, publicly-accessible full text available June 10, 2026
-
Palone, Andrea; Call, Arnau; Garcia‐Roca, Aleria; Luis, Josep M; Sigman, Matthew S; Bietti, Massimo; Nevado, Cristina; Costas, Miquel (, Angewandte Chemie International Edition)Chiral polyoxygenated cyclohexanes are valuable constituents of biologically relevant products. Herein, we report a protocol for the direct access to these scaffolds via site‐ and enantioselective non‐directed oxidation of cyclohexyl‐3,5‐mesodiethers using aqueous H₂O₂. Structural shaping of a highly reactive chiral Mn‐oxo species, achieved through the combination of a sterically encumbered ligand and a bulky carboxylic acid, promotes a precise fit of the substrate within the catalyst pocket, which translates into exceptional enantioselectivity (up to >99% ee). Computational studies reveal that C─H oxidation proceeds via an initial hydrogen atom transfer, followed by electron transfer, leading to the formation of a chiral cationic intermediate. The resulting desymmetrized 3‐methoxycyclohexanone products serve as valuable intermediates for the synthesis of bioactive cores, as they can undergo orthogonal chemical modifications to enable further structural diversification.more » « lessFree, publicly-accessible full text available July 21, 2026
An official website of the United States government
